
We’re hiring!
<jobs@omniti.com>

<http://www.omniti.com/people/jobs/>

Cathartic Catalytic
Conversion

MVC is good for your sanity.
Intro to Catalyst + Tips for App Conversion

Dave Gray
<dave@omniti.com>

MVC Quick Summary

Model:
You put your data in here, and expect to get it back out again.

Controller:
Go get or present back data that end users ask for.

View:
Make forms and data shiny and present them intuitively.

MCV? Yeah. They’re not in the same order as the acronym here because it’s clearer (to me)
to think about the different parts as layers, one sitting on top of the next in MCV order.

What is Catalyst?

a Perl MVC framework,

Catalyst is...

glue between other modules

What is Catalyst?

a Perl MVC framework,

a time-saver

glue between other modules

like perl, simple things are easy

Catalyst is...

Getting Catalyst

Matt Trout’s cat-install:

DIY:
perl -MCPAN -e ‘install Task::Catalyst’
perl -MCPAN -e ‘install Catalyst::Devel’

<http://www.shadowcatsystems.co.uk/static/cat-install>

good step-by-step tutorials
<http://search.cpan.org/perldoc?Catalyst::Manual::Tutorial>

Other Modules

DBIx::ClassModel manages data

Other Modules

DBIx::Class

HTML::Widget

Model

Controller

manages data

requests data,
organizes data

Other Modules

DBIx::Class

HTML::Widget

Template::Toolkit

Model

Controller

View

manages data

presents data

requests data,
organizes data

Template::Toolkit

One of the packages for creating Views with Catalyst

<http://search.cpan.org/perldoc?Template::Toolkit>

Template::Toolkit

Most other templating systems are supported:
Mason, HTML::Template, etc

<http://search.cpan.org/perldoc?Template::Toolkit>

One of the packages for creating Views with Catalyst

Template::Toolkit

Most other templating systems are supported:
Mason, HTML::Template, etc

Keep it simple in the View layer, just because you can do
a lot more there doesn’t mean you have to.

<http://search.cpan.org/perldoc?Template::Toolkit>

One of the packages for creating Views with Catalyst

HTML::Widget

A good module for generating forms, validating input,
and generally avoiding HTML.

<http://search.cpan.org/perldoc?HTML::Widget>

HTML::Widget

A good module for generating forms, validating input,
and generally avoiding HTML.

Easy to use from your templating library, can customize
the output HTML if you don’t like the defaults.

<http://search.cpan.org/perldoc?HTML::Widget>

HTML::Widget

A good module for generating forms, validating input,
and generally avoiding HTML.

The default validation constraints cover 95% of the input
types you will encounter.

<http://search.cpan.org/perldoc?HTML::Widget>

Easy to use from your templating library, can customize
the output HTML if you don’t like the defaults.

DBIx::Class

Provides an Object Relational Mapping (ORM) layer

<http://search.cpan.org/perldoc?DBIx::Class>

DBIx::Class

Provides an Object Relational Mapping (ORM) layer

Abstracts away storage-specific details

<http://search.cpan.org/perldoc?DBIx::Class>

DBIx::Class

Provides an Object Relational Mapping (ORM) layer

Abstracts away storage-specific details

Performs Create, Read, Update, Delete (CRUD)
operations from perl data structures.

<http://search.cpan.org/perldoc?DBIx::Class>

DBIx::Class

Provides an Object Relational Mapping (ORM) layer

Abstracts away storage-specific details

Performs Create, Read, Update, Delete (CRUD)
operations from perl data structures.

DBIx::Class::HTMLWidget uses form objects
to load data from and store data in your database.

<http://search.cpan.org/perldoc?DBIx::Class>

Where’s Catalyst?

Where’s Catalyst?

DBIx::Class

HTML::Widget

Template::Toolkit

Where’s Catalyst?

DBIx::Class

HTML::Widget

Template::Toolkit

DBIx::Class::HTMLWidget
HTML::Widget::Constraint

HTML::Widget::ResultDBIx::Class::ResultSet
HTML::Widget::Filter

HTML::Widget::Element

DBIx::Class::Schema

DBIx::Class::ResultSource

Where’s Catalyst?

(obligatory lolcat.)

Where’s Catalyst?

Catalyst::Plugin::StackTrace

Catalyst::Model::DBIC::Schema
Catalyst::Helper::View::TT

Catalyst::Helper::View::TTSite

Catalyst::Plugin::Session

(obligatory lolcat.)

Catalyst

Catalyst::Devel

Here’s Catalyst!

Here’s Catalyst!

Helpers:
Speed up development by generating functional
skeletons that can be extended as desired

Here’s Catalyst!

Helpers:
Speed up development by generating functional
skeletons that can be extended as desired

Plugins:
Easy integration with modules that allows you to mix
and match to get the environment you work best in

Here’s Catalyst!

Helpers:
Speed up development by generating functional
skeletons that can be extended as desired

Plugins:
Easy integration with modules that allows you to mix
and match to get the environment you work best in

Servers:
Standalone for easy testing, CGI and FastCGI for
deployment with better performance (works with mod_perl too)

Catalyst is the glue
It really ties the room together

Application Layout
Converting existing apps to Catalyst

1. Make your data accessible for CRUD
A) Basic Catalyst setup. Run helpers to generate
directory structures and sample modules.

B) Write the classes that enable DBIx::Class to
access and manage your data source. Here we are
basically summarizing the DDL in a way that
DBIx::Class can understand.

C) Tell DBIx::Class how to get to your data.

Application Layout

Here comes the code!

Converting existing apps to Catalyst

Application Layout
Converting existing apps to Catalyst

A) Create A Catalyst Application

$ catalyst.pl REIS
... creates a bunch of files
$ cd REIS/

(Real Estate Information Service)

Application Layout
Converting existing apps to Catalyst

$ catalyst.pl REIS
... creates a bunch of files
$ cd REIS/

(Real Estate Information Service)

Make a Holding Pen for your Model classes

$ mkdir lib/REISDB

A) Create A Catalyst Application

Application Layout
Converting existing apps to Catalyst

CREATE TABLE InterestRates1 (
InterestRateID int auto_increment,
Year int(4) not null,
Month tinyint(3) unsigned not null,
Rate decimal(6,4) unsigned not null,
Points decimal(2,1) unsigned not null,
ExcelDate int(10),
PRIMARY KEY (InterestRateID),
UNIQUE (Year, Month)

);

REIS/lib/REISDB/InterestRate.pm

package REISDB::InterestRate;
use base ‘DBIx::Class’;
__PACKAGE__->load_components(qw(

PK::Auto
Core
HTMLWidget

));
__PACKAGE__->table('InterestRates');
__PACKAGE__->add_columns(qw(
 InterestRateID
 Year
 Month
 Rate
 Points
 ExcelDate
));
__PACKAGE__->set_primary_key(qw(InterestRateID));

1;

a table in your database

a module in your modelB) Write the Classes

becomes

Application Layout
Converting existing apps to Catalyst

Create A Base Model Class
package REISDB;
use base 'DBIx::Class::Schema';

__PACKAGE__->load_classes({
 REISDB => [qw/InterestRate/],
});

1;

Application Layout
Converting existing apps to Catalyst

C) Tell Catalyst How to Get Your Data

$ script/reis_create.pl model REISDB DBIC::Schema REISDB \
dbi:dbdriver:database=dbname;host=db.example.com ‘’ ‘’ ‘{AutoCommit=>1}’

Stores connection parameters
in ./lib/REIS/Model/REISDB.pm

Associates itself with the base model
./lib/REISDB.pm

Using a Catalyst Model Helper

Application Layout
Converting existing apps to Catalyst

2. List all actions your app needs to support
We need to be able to support CRUD for the
beginning of a usable application

Application Layout
Converting existing apps to Catalyst

2. List all actions your app needs to support

3. Map those actions to descriptive URLs
/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

We need to be able to support CRUD for the
beginning of a usable application

Application Layout
Converting existing apps to Catalyst

4. Design forms to input and update your data

Application Layout
Converting existing apps to Catalyst

The implementation of steps 3 and 4 is
interesting, so let’s examine those in greater detail

Application Layout
Converting existing apps to Catalyst

The implementation of steps 3 and 4 is
interesting, so let’s examine those in greater detail

$ script/reis_create.pl controller InterestRate
... creates a couple files

First, use Catalyst’s helper to create a controller

Mapping URLs to Actions
Using Catalyst::Dispatch::Chained

Using Chained Actions gives us an expressive and orderly
way to attach Controller methods to URLs

Mapping URLs to Actions
Using Catalyst::Dispatch::Chained

Using Chained Actions gives us an expressive and orderly
way to attach Controller methods to URLs

Chained(path) What needs to run before this action?

Mapping URLs to Actions
Using Catalyst::Dispatch::Chained

Using Chained Actions gives us an expressive and orderly
way to attach Controller methods to URLs

Chained(path)

PathPart(path)

What needs to run before this action?

What URL part activates this action?

Mapping URLs to Actions
Using Catalyst::Dispatch::Chained

Using Chained Actions gives us an expressive and orderly
way to attach Controller methods to URLs

Chained(path)

PathPart(path)

Args(int)

What needs to run before this action?

What URL part activates this action?

This is an endpoint. URL can contain args.

Mapping URLs to Actions
Using Catalyst::Dispatch::Chained

Using Chained Actions gives us an expressive and orderly
way to attach Controller methods to URLs

Chained(path)

PathPart(path)

Args(int)

CaptureArgs(int)

What needs to run before this action?

What URL part activates this action?

This is an endpoint. URL can contain args.

Not an endpoint. URL can contain args.

Defining Chained Actions

/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

URL formats to support:

3. Map actions to descriptive URLs

Defining Chained Actions

/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

URL formats to support:

sub list_all : Path Args(0) {
my ($self, $c) = @_;
stash data for display in template

}

3. Map actions to descriptive URLs

Defining Chained Actions

/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

URL formats to support in our Controller methods:

sub list_all : Chained(‘/’) PathPart(‘interestrates’) Args(0) {
my ($self, $c) = @_;
stash data for display in template

}

3. Map actions to descriptive URLs

Defining Chained Actions

/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

sub create : Local {
my ($self, $c) = @_;
build and display data entry form

}

3. Map actions to descriptive URLs

URL formats to support in our Controller methods:

Defining Chained Actions

/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

sub create : Chained(‘/’) PathPart(‘interestrates/create’) Args(0) {
my ($self, $c) = @_;
build and display data entry form

}

3. Map actions to descriptive URLs

URL formats to support in our Controller methods:

Defining Chained Actions

/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

sub view : Chained(‘/’) PathPart(‘interestrates’) Args(1) {
my ($self, $c, $id) = @_;
pull data for one record for display in template

}

3. Map actions to descriptive URLs

URL formats to support in our Controller methods:

Defining Chained Actions

/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

sub _get_id : Chained(‘/’) PathPart(‘interestrates’) CaptureArgs(1) {
my ($self, $c, $id) = @_;
$c->stash(ir_id, $id); # stash id to use in actions later in the chain

}

3. Map actions to descriptive URLs

URL formats to support in our Controller methods:

Defining Chained Actions

/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

sub edit : Chained(‘_get_id’) PathPart(‘edit’) Args(0) {
my ($self, $c) = @_;
my $id = $c->stash->{ir_id};
build edit form for stashed id

}

3. Map actions to descriptive URLs

URL formats to support in our Controller methods:

Defining Chained Actions

/interestrates/
/interestrates/create
/interestrates/42
/interestrates/42/edit
/interestrates/42/delete

sub delete : Chained(‘_get_id’) PathPart(‘edit’) Args(0) {
my ($self, $c) = @_;
my $id = $c->stash->{ir_id};
confirm delete and then trash

}

3. Map actions to descriptive URLs

URL formats to support in our Controller methods:

Designing Forms

sub make_ir_widget {
 my ($self, $c) = @_;
 my $w = $c->widget('ir_form')->method('post');

 # get our valid data
 my $thisyear = (localtime(time))[5]+1900;
 my @years = map { $_ => $_ } reverse 1970 .. $thisyear;
 my @months = map { $_ => $_ } 1 .. 12;

 # build the form
 $w->element('Hidden', 'InterestRateID');
 $w->element('Select', 'Year')->label('Year')->options(@years);
 $w->element('Select', 'Month')->label('Month')->options(@months);
 $w->element('Textfield', 'Rate')->label('Rate')->size(10);
 $w->element('Textfield', 'Points')->label('Points')->size(5);
 $w->element('Textfield', 'ExcelDate')->label('ExcelDate')->size(15);
 $w->element('Submit', 'submit')->value('submit');

 return $w;
}

4. Using HTML::Widget for form interaction

Validating Form Input

set required fields
 $w->constraint(All => qw/Year Month Rate Points/)->message('Required.');
must be an integer
 $w->constraint(Integer => 'InterestRateID')->message('Invalid InterestRateID.');
 $w->constraint(Integer => 'ExcelDate')->message('Must be an integer.');
must be a number within a specified range
 $w->constraint(Range => 'Year')->min(1970)->max($thisyear)
 ->message("Must be in the range 1970-$thisyear.");
 $w->constraint(Range => 'Month')->min(1)->max(12)
 ->message('Must be in the range 1-12.');
must be a number (optional decimal point, etc.)
 $w->constraint(Number => 'Rate')->message('Must be a number.');
 $w->constraint(Number => 'Points')->message('Must be a number.');

Many other types of validation are built in...

4. Using HTML::Widget for form interaction

Validating Form Input

Callback
CallbackOnce
Regex

Length

Several Types of Validation Functions

Presence/Dependency
All
AllOrNone
Any
DependOn

Predefined Patterns
ASCII
Bool
Date
DateTime
Email
HTTP
Integer
Number
Printable
Range
String
Time

User-Defined Logic

Very Specific

Equal
In

Comparison Tests

4. Using HTML::Widget for form interaction

Lots of Good Docs
They are out there, read them!

<http://search.cpan.org/perldoc?A::Module>

<http://www.catalystframework.org/>

Catalyst::Manual::Tutorial
DBIx::Class::Manual
Template::Toolkit
HTML::Widget

Catalyst::Dispatch::Chained

Speaker Bio
Who is this guy?

Web Programmer with Perl focus since 1999

$dayjob projects revolve around email: ECM/MTA software
We’re hiring! <jobs@omniti.com>

 <http://www.omniti.com/people/jobs/>

Catalyst helps me be more efficient
with my free time!

